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becomes 

(3U(rl)3U(r2)) 

--~ (2 7T) -6 $~ dkl dk2 exp ( ikl-  rl) exp (ik2" r2) 

x U(kl)U(k2)S(kl, k2) Y~ exp [ - i (k l  + k2)" 1], 
l 

(A6) 

where the correlation function S is given by 

S(kl,  k2) = exp [ - M  (kl + k2) 2] 

- e x p  ( -Mk~)  exp ( -Mk2) .  (37) 

In both examples discussed in the paper the f func- 
tions of (A1) take the form of plane waves and so 
we write 

fl(rl) = exp ( - iq l  "rl), 
(A8) 

f2(r2) = exp (iq2" r2). 

When (A6) is substituted into (A1) we obtain 

~¢ = u(qt)u*(q2)S(qt-q2) Y exp [ i (q2-q l )"  !] (A9) 
! 

which is the basic result for the matrix elements. It 
only remains to look at the sum in (A9), which covers 
all lattice sites in the crystal. It follows that the trans- 
verse parts, QI and Q2, of ql and q2 must be equal 
to within a two-dimensional reciprocal-lattice vector, 
G. The sum in the z direction is however only over 
the finite thickness of the crystal. Provided (q2)z- 
(ql)z is small (as it is in practice) the sum can be 
replaced by an integral to yield 

(1/Iz) j dz exp [ i( q2z - qiz)Z] 
o 

= ( t~ Iz) exp [ i(q2z - q,z)t/2] 

x s in[ (q2z -q i z ) t / 2 ] / [ (q2z -q l z ) t / 2 ] ,  (A10) 

where Iz is the repeat distance in the z direction. It 
is this oscillatory thickness-dependent factor which 
controls the degree of coherence between different 
states. If ql~ = qaz, (A10) gives a contribution which 
increases linearly with t. However, if qlz and q2z are 
different the (sin x ) / x  factor in (A10) falls off with 
increasing thickness, which indicates a reduction in 
the off-diagonal elements of the density matrix and 
a correspondingly weaker coherence. 
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Abstract 

The number of orientational parameters is evalu- 
ated for a general point-symmetry operation in n 
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dimensions. When the operation contains orthog- 
onal identical crypto-components some of the 
parameters become free and this phenomenon is 
investigated. 
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I .  In troduct ion  

It is a commonplace that combinations of orthogonal 
mirror reflections give rise to symmetry operations 
(twofold rotation, centre of inversion etc.) whose 
effects are independent of the orientation of their 
constituent (crypto-) mirrors. When the detailed 
geometric effects of double rotations were worked 
out in four dimensions it was found that some of 
these were partially independent of the orientation 
of their crypto-rotation planes (whittaker,  1984). The 
evidence for this came primarily from a geometrical 
representation of the symmetry in hyperstereograms, 
but in the case of the double fourfold rotation (sym- 
bolized 44 or IV) it was substantiated algebraically• 
If the crypto-rotation planes are supposed to lie on 
the planes of the wx and yz  axes, matrices for the 
two 90 ° rotations multiply together to give the matrix 
of the IV operation as 

(i 10 0 0 00 01 00 0 100 i) 
0 0 0 1 0 0 1 

(i l ° i )  _ 0 0 

0 0 - 

0 1 

(1) 

However, the same product is obtained by multiplying 
together 

/ 1 - c o s p c o s q  

1 [  l + c o s p  cos q 

2 ~ sin p + cos p sin q 

k - s i n  p + cos p sin q 

- 1 - cos p cos q 

1 - cos p cos q 

sin p - cos p sin q 

sin p + cos p sin q 

sin p - cos p sin q 

- s i n  p - cos p sin q 

1 + cos p cos q 

1 - c o s  p cos q 

sin p + cos p sin q \ 

sin p - cos p sin q ] 

- l + c o s p c o s q  ] 

l + c o s p c o s q  / 

(2) 

and 

These two matrices* also represent 90 ° rotations about 
a pair of orthogonal planes whose orientation 
depends on the free variables p and q. Since the 
orientation of a plane (and therefore of a pair of 
orthogonal planes) in four dimensions requires four 
parameters to specify it (Whittaker, 1985, p. 46), it is 
evident that the effect of the IV operation is indepen- 
dent of at least two out of the four parameters that 
would be expected to be required to specify its 
orientation• 

The above factorization of the IV operation was 
performed in an ad hoc manner that could not easily 
be extended to operations of order other than 4, and 
the meaning of the parameters p and q was not 
ascertained. However, Weigel, Veysseyre, Phan, 
Effantin & Billiet (1984) showed more generally that, 
for any four-dimensional symmetry operation involv- 
ing two orthogonal rotations through equal angles on 
the wx and yz  planes, the matrix is invariant under 
a transformation of the axes by a double rotation 
through equal arbitrary angles (say 0) parallel to the 
planes wy and xz. They therefore concluded that the 
two (crypto-) 'planes of rotation are not unique but 
belong to a one-parameter family of pairs of 
orthogonal planes'. They did not observe that the 
invariance also exists for a further transformation by 
a double rotation through different equal arbitrary 
angles (say ~p) parallel to the planes xy  and zw, and 
that the crypto-planes of rotation therefore belong to 
a two-parameter family, at least• Furthermore, it can 
be shown that the two parameters 0, ~p introduced in 
this analysis can be related to those appearing in the 
factorization of the IV operation (1) above by the 
relations 

p = 2 0  and q=-2q~.  

It is to be noted that the IV operation (1) was of 
the type IV+ (Whittaker 1990), and the double-rota- 
tion transformations of the axes in that case must 
both be of negative hand. For an invariant transfor- 
mation of a IV_ operation they must both be of 
positive hand, and the two matrix factors in that case 
may be obtained from (2) and (3) by multiplying both 
the right-hand column and the bottom row by -1 ,  
thereby leaving the bottom term of the diagonal 
unchanged• 

l + c o s p c o s q  

1 [  1 - c o s p c o s q  

2 ~ - s in  p - cos p sin q 

\ sin p - cos p sin q 

- s in  p + cos p sin q 

sin p + cos p sin q 

1 - cos p cos q 

1 + cos p cos q 

- 1 + cos p cos q 

1 + cos p cos q 

- s i n  p + cos p sin q 

- s i n  p - cos p sin q 

- s i n  p -  cos p sin ~ \  

) - s i n  p + cos p sin 

- 1 - cos p cos q 

1 - cos p cos q 

(3) 

2. Par t i t i on ing  o f  n d i m e n s i o n s  

Following Weigel et al. (1984) we may express a 
general point-symmetry operation in n dimensions 
on a suitable basis in terms of a unimodular matrix 

* The first of the two matrices was given by Whittaker (1984) 
but contained errors in the signs of some of the terms. Both matrices 
were given correctly by Whittaker (1985). 
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M of  the form 

M= 

1 0 ... 0 0 ... 0 0 0 0 0 0 ... 

0 1 ... 0 0 ... 0 0 0 0 0 0 ... 

0 0 ... -1 0 ... 0 0 0 0 0 0 ... 

0 0 ... 0 -1 ... 0 0 0 0 0 0 ... 

0 0 ... 0 0 ... 0 0 0 0 ... 
Nl 

0 0 ... 0 0 ... 0 0 0 0 ... 

0 0 ... 0 0 ... 0 0 0 0 ... 
N2 

0 0 ... 0 0 ... 0 0 0 0 ... 
0 0 ... 0 0 ... 0 0 0 0 ... 

N3 
0 0 ... 0 0 ... 0 0 0 0 ... 

(4) 

or ienta t ion  of  a plane in n-d imens iona l  space is 
specified by 2 ( n - 2 )  parameters.  

It is clear that  when we have par t i t ioned m out o f  
n dimensions,  any further  par t i t ioning is to be appl ied  
to the remaining ( n - m )  dimensions.  Thus if we 
par t i t ion out a set of  2h d imensions  fol lowed by a 
set of  2k dimensions the total  number  of  or ienta t ional  
parameters  is 

2h(n - 2 h )  + 2 k ( n  - 2 h  - 2 k )  

= 2n(h + k) - 4 ( h 2  + hk+ k2). 

The symmetry of  this result shows that  the order  of  
the par t i t ioning is irrelevant.  

where each 2 x 2 matrix N~ is given by 

= (cos  27r qi/Pi - s i n  27r qi/Pi~ 

Ni \ s i n  2zr qi/Pi cos 2zr qi/Pi ] 

and represents a rotat ion of  order  p~ (>2) .  
The n dimensions may then be par t i t ioned for our  

purpose into four sets: 
(i) f d imensions cor responding  to the number  of  

+ l s  on the diagonal  of  M; 
(ii) g dimensions cor responding  to the number  of  

- I s  on the diagonal  of  M, being the number  of  
or thogonal  crypto-mirror  operat ions;  

(iii) 2H  dimensions conta in ing subsets of  2hi 
dimensions,  each of  which supports  a mult iple  rota- 
t ion conta ining hj identical  crypto-rotat ions having 
the same values of  p~ (>2)  and Iq, I; 

(iv) 2k dimensions suppor t ing a mult iple rota t ion 
involving k crypto-rotat ions all differing from one 
another  and from those involved in (iii) in respect of  
p, (>2 )  or Iq,[ or both. 
Any one, two or three of  these sets may be absent. 

The problem then consists in finding the number  
of  parameters  required to define the external orienta- 
t ion of  each of  the sets, so defined, that  are present, 
and then any addi t ional  parameters  required to define 
the internal  or ientat ions of  the c rypto-components  
within the sets. When all the sets but  one have been 
oriented,  no further external parameters  are required 
since the last set is defined as the complement  of  the 
total i ty of  the others. 

The or ienta t ion of  an m-dimens iona l  subspace 
through the origin is defined if m l inearly independen t  
points  in it are specified. In n d imensions  each of  
these points has n coordinates ,  making mn param- 
eters. However,  once the subspace has been defined 
its or ienta t ion is unaffected by free movement  of  the 
points  within it, so that  each of  the m points has m 
free parameters.  Thus the number  of  parameters  
required to specify the or ienta t ion  of  a part i t ion of  n 
d imensions  into two conjugate  subspaces of  m and 
( n - m )  dimensions is m ( n - m ) .  In part icular  the 

3 .  I n t e r n a l  o r i e n t a t i o n  

3.1. k crypto-rotations all different (Pi > 2) 

It is convenient  to treat this case first, a l though in 
defining the set of  k different crypto-rotat ions  in the 
previous section it was necessary to do so after remov- 
ing from considerat ion any rotat ion which occurs 
more than once in the whole operat ion.  

Since the crypto-rotat ions are all different the 
or ienta t ion  of  the opera t ion  clearly requires the plane 
suppor t ing each one to be defined unequivocal ly .  
Thus the problem is s imply that  of  par t i t ioning suc- 
cessive planes from the set of  2k dimensions.  This 
proceeds as in the previous section, and the number  
of  parameters  is given by 2 ( 2 k -  2) + 2 ( 2 k -  4) + . . .  + 
2 1 2 k -  2 ( k -  1 ) ]=  2 k ( k -  1). 

3.2. h crypto-rotations all identical [with identical 
p, (>2)  and Iq,[] 

The relevant por t ion of  the matrix M conta in ing h 
2 x 2 matrices on the diagonal ,  identical  but  for the 
sign of  qi, may be written 

M! = 

cos a I -s inai  0 
sin al cos al 0 

0 0 cos a 2 
0 0 sin a2 

0 0 0 
0 0 0 

0 ... 0 0 
0 ... 0 0 

-sin a2 ... 0 0 

COS a 2 ... 0 0 
: ". : : 

0 ... COS a h - - s i n  ah 
0 ... sin a h cos a h 

where ai = 2zrqi/pi, and varies only in its sign. This 
t ransforms an arbitrary unit  vector 

V = ( C l ,  C 2 ,  C a , . . . ,  CEh) 

to a vector 

v' = (cl cos a~ - c2 sin a~, cl sin a~ 

+ C 2 C O S  O~ l , C 3 C O S  t~ 2 

- c4 sin a 2 , . . . ,  C2h-~ sin ah + C2h COS ah) 
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and the angle between v and v' is given by 

2 cos 0 = Cl cos al  - ClC2 sin al  + ClC2 sin al 

+c~cos a 1 + .  . . + C22h COS ah 

= COS O~ 

where t~ = Is,I. 
Thus the vector is turned through 2*rlqil/pi by each 

application of the operations, and after pi applica- 
tions it coincides with itself, so all the images are 
coplanar. Their plane (/7) is therefore a possible 
supporting plane of one of the crypto-rotations of the 
operation• 

In order to consider the orientation o f / 7  we note 
that it is spanned by any two linear combinations of 
v and v', and we take (c2- Cl cot al)V + cl cosec o~l v' 
and (c1+ c2 cot a l )V-  c2 cosec al v' whose compo- 
nents after renormalizing are of the form (0, CI, C2, 
C3 , . . . ,C2h-2 ,  CEh-l) and (Cl, 0, Ca, - ( 7 2 , . . . ,  
C2h-1, --C2h-2) with z~h~ -I C~-- 1. The orientation of 
the p lane/7  is thus specified by 2(h - 1) parameters, 
whereas a general plane in 2h-dimensional space 
requires 4 ( h -  1) parameters to specify its orientation 
uniquely. Thus/7  belongs to a set of planes specified 
by 2 ( h - l )  parameters and having 2 ( h - 1 )  free 
parameters. 

Conjugate to the plane/-/ is  a 1,2h - 2)-dimensional 
subspace containing the remaining (h - 1) supporting 
planes• The parameters required to specify each of 
these in turn can be considered in the same way, so 
that the total number of internal parameters of the 
h-tuple rotation is given by 2 ( h -  1 ) + 2 ( h - 2 ) + • . . +  
2 = h(h - 1). This is half the number that would be 
required if the rotations were all different, as shown 
in § 3.1, and the remaining h ( h - 1 )  parameters are 
free. 

3.3. g or thogonal  crypto-reflections 

In this case the relevant part of the matrix M is 

M2 l 
, 0 0 0 / 
0 -1  0 ... 0 

= 0 -1  ... 0 

' ' 0 

0 0 ... -1  

and it is evident that the symmetry has no internal 
orientational parameters since every vector v is trans- 
formed to -v. That is, v and its image v' are collinear 
and are related by a reflection operation in a one- 
dimensional subspace having no fixed parameters; its 
orientational parameters are all free and are defined 
by v, just as half of the parameters of the plane in 
which v was rotated were found to be free and defined 
by v in § 3.2. 

4. Discussion 

Although the properties of the matrix M are such 
that it is not necessary to analyse symmetry operations 
in terms of any crypto-components more complex 
than rotations, the conclusions regarding free param- 
eters can be illuminated by considering an analysis 
in terms of double rotations• For example, in eight 
dimensions one could consider the operation 5 1 5 2 8 1 8 3  

as the dual double rotation V VIII.* The parameters 
involved would be 16 for the partitioning into two 
four-dimensional subspaces, making 24 in all. The 
whole operation would repeat an arbitrary vector to 
span the whole eight-dimensional space. On the other 
hand a dual double rotation with two identical crypto- 
components such as VV can be rearranged from 
5'52. 5152 to 515 I. 5252. Again the partitioning into 
two four-dimensional subspaces requires 16 param- 
eters, but the orientation of the double equal rotation 
within each only requires two, making 20 in all and 
leaving 4 parameters free. Furthermore we see from 
the rearranged form that a vector operated on by 5151 
is rotated through 27r/5 in a plane and is then rotated 
through 4,r/5 in an orthogonal plane by the 5252 
operation• The vector is therefore repeated to the 
vertices of a pentatope just as if it were operated on 
by a single V in an appropriate (not completely deter- 
mined) orientation. The initial vector and its four 
images spans only a four-dimensional subspace 
whose orientation varies with the initial vector and 
this variable subspace can be regarded as a possible 
support of one of the two crypto-V operations. 

The purpose of this discussion is to point out the 
generality of the phenomenon that when identical 
crypto-components are repeated a vector and its 
images span a subspace of the same dimensionality 
as if only one of the cryptocomponents were acting 
alone in a subspace containing the vector: if the 
repeated crypto-components are one-dimensional 
mirror operations the subspace is one-dimensional; 
if they are rotations it is a plane; if they are double 
rotations it is four-dimensional, and so on. Whenever 
this occurs some orientational parameters become 
free - in the first case all of them, in the second case 
half of them, and in more complex cases a fraction 
less than half. This fraction can be evaluated but is 
of little interest because such situations can be fully 
treated in terms of repeated component crypto-rota- 
tion planes• 

5. Concluding remarks 

The number of parameters required to specify the 
orientation of any n-dimensional point-symmetry 

* The superscript numerals in 5~5 2 etc. denote the values of ]q,I 
in the crypto-rotation components. 
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operation has been derived. For four-dimen- 
sional operations involving a pair of identical rota- 
tions two, and only two, of the expected four 
orientational parameters are free parameters. This 
confirms what has hitherto been believed but not 
proven. 
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Abstract 

The X-ray optics in a strained single crystal under 
ultrasonic excitation are considered. The anomalous 
behavior of diffraction intensity, depending on sound 
amplitude, is analyzed. The interference of X-rays 
moving along different trajectories is demonstrated, 
which leads to a new type of Pendell6sung effect, 
depending on the strain gradient and sound 
frequency. Experimental data agree with the theoreti- 
cal predictions. 

I. Introduction 

The problem of ultrasonic influence on X-ray and 
neutron diffraction is now under intensive investiga- 
tion. The most interesting phenomena arise when the 
magnitude of the ultrasound wave vector k is of the 
order of the gap Ako between the branches of the 
dispersion surface (DS) (in the two-beam approxima- 
tion). In this case diffraction is of a multiwave nature, 
since, together with the nodes 0 and H of the 
reciprocal lattice, the points +ink and H + mk will 
be located near the Ewald sphere (Entin, 1979). For- 
mally, if 

k >  Ako (1) 

one speaks about the creation of an ultrasonic super- 
lattice, which strongly modifies the eigenstates of 
diffracted quanta inside the crystal. Such ultrasound 
we will call here a high-frequency wave. 

Interaction between modified Bloch states by 
means of high-frequency ultrasonic perturbation 
leads to new physical effects, such as the resonant 
ultrasonic suppression of the Borrmann transmission 
(Entin, 1977), the ultrasound-induced Pendelli~sung 

0108-7673/92/020225-07503.00 

beatings in diffraction intensity (lolin, Zolotoyabko, 
Raitman, Kuvaldin & Gavrilov, 1986; Entin & Puch- 
kova, 1984) and anomalous behavior of diffraction 
intensity in elastically deformed crystals in the pres- 
ence of acoustic waves (Iolin, Raitman, Kuvaldin & 
Zolotoyabko, 1988). 

The latter effect consists of a substantial decrease 
(up to 50%) in the diffraction intensity I at small 
sound amplitudes w (Hw < 1, where H is the magni- 
tude of the reciprocal-lattice vector), in contrast to 
the intensity growth in a thin nondistorted crystal 
undergoing ultrasonic excitation. Such curves were 
first obtained in a neutron diffraction experiment and 
were theoretically explained by E. Iolin in terms of 
the violation of the adiabaticity condition for quanta 
movement, taking into account the inelastic multi- 
phonon scattering (Iolin, 1987). 

Moreover, an additional Pendell6sung effect was 
predicted, due to the interference of waves travelling 
along different trajectories inside the distorted crystal 
under ultrasonic excitation. In contrast with the well 
known results for elastically strained crystals without 
ultrasound (Kato, 1964; Hart, 1966), the new Pendel- 
16sung effect reveals itself in the form of diffraction 
intensity oscillations, measured at definite sound 
amplitudes. The oscillation period depends on the 
strain gradient b and sound frequency v (more pre- 
cisely on the parameter k/zako). Preliminary results 
in this field, obtained with both X-ray and neutron 
beams, were reported at the Twelfth European Crys- 
tallographic Meeting (Iolin, Zolotoyabko, Raitman 
& Kuvaldin, 1989). 

Here we present the detailed data concerning X-ray 
diffraction in elastically strained crystals undergoing 
high-frequency ultrasound. 
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